213 research outputs found

    Xeno-estrogens and breast cancer

    Get PDF

    Aryl hydrocarbon receptor and cysteine redox dynamics underlie (Mal)adaptive mechanisms to chronic intermittent hypoxia in kidney cortex

    Get PDF
    Funding Information: Funding: This work was supported by Fundação para CiĂȘncia e Tecnologia [PTDC/MED-TOX/30418/2017] and iNOVA4Health [UID/Multi/04462/2013]. M.J.C., F.L.-C., N.R.C., C.G.-D. and J.M. are supported by FCT grants [SFRH/BD/131331/2017, PD/BD/128337/2017, PD/BD/114257/2016, and PD/BD/105892/2014, PTDC/MED-TOX/30418/2017 respectively]. Publisher Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland.We hypothesized that an interplay between aryl hydrocarbon receptor (AhR) and cysteine-related thiolome at the kidney cortex underlies the mechanisms of (mal)adaptation to chronic intermittent hypoxia (CIH), promoting arterial hypertension (HTN). Using a rat model of CIH-HTN, we investigated the impact of short-term (1 and 7 days), mid-term (14 and 21 days, pre-HTN), and long-term intermittent hypoxia (IH) (up to 60 days, established HTN) on Cyp1a1 protein level (a sensitive hallmark of AhR activation) and cysteine-related thiol pools. We found that acute and chronic IH had opposite effects on Cyp1a1 and the thiolome. While short-term IH decreased Cyp1a1 and increased protein-S-thiolation, long-term IH increased Cyp1a1 and free oxidized cysteine. In addition, an in vitro administration of cystine, but not cysteine, to human endothelial cells increased Cyp1a1 expression, supporting cystine as a putative AhR activator. This study supports Cyp1a1 as a biomarker of obstructive sleep apnea (OSA) severity and oxidized pools of cysteine as risk indicator of OSA-HTN. This work contributes to a better understanding of the mechanisms underlying the phenotype of OSA-HTN, mimicked by this model, which is in line with precision medicine challenges in OSA.publishersversionpublishe

    Epigenetics and the maintenance of developmental plasticity: extending the signalling theory framework

    Full text link
    Developmental plasticity, a phenomenon of importance in both evolutionary biology and human studies of the developmental origins of health and disease (DOHaD), enables organisms to respond to their environment based on previous experience without changes to the underlying nucleotide sequence. Although such phenotypic responses should theoretically improve an organism’s fitness and performance in its future environment, this is not always the case. Herein, we first discuss epigenetics as an adaptive mechanism of developmental plasticity and use signaling theory to provide an evolutionary context for DOHaD phenomena within a generation. Next, we utilize signalling theory to identify determinants of adaptive developmental plasticity, detect sources of random variability – also known as process errors that affect maintenance of an epigenetic signal (DNA methylation) over time, and discuss implications of these errors for an organism’s health and fitness. Finally, we apply life‐course epidemiology conceptual models to inform study design and analytical strategies that are capable of parsing out the potential effects of process errors in the relationships among an organism’s early environment, DNA methylation, and phenotype in a future environment. Ultimately, we hope to foster cross‐talk and interdisciplinary collaboration between evolutionary biology and DOHaD epidemiology, which have historically remained separate despite a shared interest in developmental plasticity.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/145204/1/brv12396_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/145204/2/brv12396.pd

    Putative biomarkers of environmental enteric disease fail to correlate in a cross-sectional study in two study sites in Sub-Saharan Africa

    Get PDF
    Environmental enteric dysfunction (EED) is an elusive, inflammatory syndrome of the small intestine thought to be associated with enterocyte loss and gut leakiness and lead to stunted child growth. To date, the gold standard for diagnosis is small intestine biopsy followed by histology. Several putative biomarkers for EED have been proposed and are widely used in the field. Here, we assessed in a cross-sectional study of children aged 2-5 years for a large set of biomarkers including markers of protein exudation (duodenal and fecal alpha-1-antitrypsin (AAT)), inflammation (duodenal and fecal calprotectin, duodenal, fecal and blood immunoglobulins, blood cytokines, C-reactive protein (CRP)), gut permeability (endocab, lactulose-mannitol ratio), enterocyte mass (citrulline) and general nutritional status (branched-chain amino acids (BCAA), insulin-like growth factor) in a group of 804 children in two Sub-Saharan countries. We correlated these markers with each other and with anemia in stunted and non-stunted children. AAT and calprotectin, CRP and citrulline and citrulline and BCAA correlated with each other. Furthermore, BCAA, citrulline, ferritin, fecal calprotectin and CRP levels were correlated with hemoglobin levels. Our results show that while several of the biomarkers are associated with anemia, there is little correlation between the different biomarkers. Better biomarkers and a better definition of EED are thus urgently needed

    A human biomonitoring (HBM) Global Registry Framework: Further advancement of HBM research following the FAIR principles.

    Get PDF
    Data generated by the rapidly evolving human biomonitoring (HBM) programmes are providing invaluable opportunities to support and advance regulatory risk assessment and management of chemicals in occupational and environmental health domains. However, heterogeneity across studies, in terms of design, terminology, biomarker nomenclature, and data formats, limits our capacity to compare and integrate data sets retrospectively (reuse). Registration of HBM studies is common for clinical trials; however, the study designs and resulting data collections cannot be traced easily. We argue that an HBM Global Registry Framework (HBM GRF) could be the solution to several of challenges hampering the (re)use of HBM (meta)data. The aim is to develop a global, host-independent HBM registry framework based on the use of harmonised open-access protocol templates from designing, undertaking of an HBM study to the use and possible reuse of the resulting HBM (meta)data. This framework should apply FAIR (Findable, Accessible, Interoperable and Reusable) principles as a core data management strategy to enable the (re)use of HBM (meta)data to its full potential through the data value chain. Moreover, we believe that implementation of FAIR principles is a fundamental enabler for digital transformation within environmental health. The HBM GRF would encompass internationally harmonised and agreed open access templates for HBM study protocols, structured web-based functionalities to deposit, find, and access harmonised protocols of HBM studies. Registration of HBM studies using the HBM GRF is anticipated to increase FAIRness of the resulting (meta)data. It is also considered that harmonisation of existing data sets could be performed retrospectively. As a consequence, data wrangling activities to make data ready for analysis will be minimised. In addition, this framework would enable the HBM (inter)national community to trace new HBM studies already in the planning phase and their results once finalised. The HBM GRF could also serve as a platform enhancing communication between scientists, risk assessors, and risk managers/policy makers. The planned European Partnership for the Assessment of Risk from Chemicals (PARC) work along these lines, based on the experience obtained in previous joint European initiatives. Therefore, PARC could very well bring a first demonstration of first essential functionalities within the development of the HBM GRF

    Regulation of Mouse Small Heat Shock Protein αb-Crystallin Gene by Aryl Hydrocarbon Receptor

    Get PDF
    The stress-inducible small heat shock protein (shsp)/αB-crystallin gene is expressed highly in the lens and moderately in other tissues. Here we provide evidence that it is a target gene of the aryl hydrocarbon receptor (AhR) transcription factor. A sequence (−329/−323, CATGCGA) similar to the consensus xenobiotic responsive element (XRE), called here XRE-like, is present in the αBE2 region of αB-crystallin enhancer and can bind AhR in vitro and in vivo. αB-crystallin protein levels were reduced in retina, lens, cornea, heart, skeletal muscle and cultured muscle fibroblasts of AhR−/− mice; αB-crystallin mRNA levels were reduced in the eye, heart and skeletal muscle of AhR−/− mice. Increased AhR stimulated αB-crystallin expression in transfection experiments conducted in conjunction with the aryl hydrocarbon receptor nuclear translocator (ARNT) and decreased AhR reduced αB-crystallin expression. AhR effect on aB-crystallin promoter activity was cell-dependent in transfection experiments. AhR up-regulated αB-crystallin promoter activity in transfected HeLa, NIH3T3 and COS-7 cells in the absence of exogenously added ligand (TCDD), but had no effect on the αB-crystallin promoter in C2C12, CV-1 or Hepa-1 cells with or without TCDD. TCDD enhanced AhR-stimulated αB-crystallin promoter activity in transfected αTN4 cells. AhR could bind to an XRE-like site in the αB-crystallin enhancer in vitro and in vivo. Finally, site-specific mutagenesis experiments showed that the XRE-like motif was necessary for both basal and maximal AhR-induction of αB-crystallin promoter activity. Our data strongly suggest that AhR is a regulator of αB-crystallin gene expression and provide new avenues of research for the mechanism of tissue-specific αB-crystallin gene regulation under normal and physiologically stressed conditions

    Developing human biomonitoring as a 21st century toolbox within the European exposure science strategy 2020-2030

    Get PDF
    Human biomonitoring (HBM) is a crucial approach for exposure assessment, as emphasised in the European Commission's Chemicals Strategy for Sustainability (CSS). HBM can help to improve chemical policies in five major key areas: (1) assessing internal and aggregate exposure in different target populations; 2) assessing exposure to chemicals across life stages; (3) assessing combined exposure to multiple chemicals (mixtures); (4) bridging regulatory silos on aggregate exposure; and (5) enhancing the effectiveness of risk management measures. In this strategy paper we propose a vision and a strategy for the use of HBM in chemical regulations and public health policy in Europe and beyond. We outline six strategic objectives and a roadmap to further strengthen HBM approaches and increase their implementation in the regulatory risk assessment of chemicals to enhance our understanding of exposure and health impacts, enabling timely and targeted policy interventions and risk management. These strategic objectives are: 1) further development of sampling strategies and sample preparation; 2) further development of chemical-analytical HBM methods; 3) improving harmonisation throughout the HBM research life cycle; 4) further development of quality control / quality assurance throughout the HBM research life cycle; 5) obtain sustained funding and reinforcement by legislation; and 6) extend target-specific communication with scientists, policymakers, citizens and other stakeholders. HBM approaches are essential in risk assessment to address scientific, regulatory and societal challenges. HBM requires full and strong support from the scientific and regulatory domain to reach its full potential in public and occupational health assessment and in regulatory decision-making
    • 

    corecore